Table of Contents

Larger Combinations of Circuit Elements

Now that you know about series and parallel combinations (both of resistors and capacitors), you can also make larger combinations in a circuit involving both series and parallel relationships. These relationships are foundational for the types of circuits that power all electronics (from your cell phone to NASA space station). Depending on the set up of your circuit and what you want the circuit to do, these circuits can get quite complicated. These notes will provide an example of a more complicated circuit and discuss strategies that you could use to analyze them.

As a reminder,

Circuit Element Placement Same Across Elements How they add Formula
Resistor In series Current Reg. addition $R_{eq} = R_{1} + R_{2} + R_{3} + \dots$
Resistor In parallel Potential Inv. addition $\dfrac{1}{R_{eq}} = \dfrac{1}{R_{1}} + \dfrac{1}{R_{2}} + \dfrac{1}{R_{3}} + \dots$
Capacitor In series Charge Inv. addition $\dfrac{1}{C_{eq}} = \dfrac{1}{C_{1}} + \dfrac{1}{C_{2}} + \dfrac{1}{C_{3}} + \dots$
Capacitor In parallel Potential Reg. addition $C_{eq} = C_{1} + C_{2} + C_{3} + \dots$

A More Complicated Circuit

Complex circuit with 5 resistors (in a combination of series and parallel)

If we have a complex circuit with 5 resistors (shown above), among other things, we could solve for the total equivalence resistance of the circuit. Ultimately, this will tell you how much current the battery must provide. (You could also solve for the potential difference across each resistor, the current going through each resistor, the power dissipated in all the parts of the circuit, etc.)

If we start with the $R_3$ and $R_4$ resistors, we can tell that these are in series because all of the current that goes through $R_3$ also goes through $R_4$. We can find the combined 3,4 equivalent resistance then: $$R_{3,4}=R_3+R_4$$ $$R_{3,4}=24\Omega$$ At this point $R_2$ and $R_{3,4}$ are in parallel because they have the same potential difference across them. Note that $R_2$ is not in parallel with $R_3$ or with $R_4$ but only with combination. We can then find the combined resistance of $R_{2-4}$ then: $$\frac{1}{R_{2-4}}=\frac{1}{R_2}+\frac{1}{R_{3,4}}$$ $$R_{2-4}=(\frac{1}{7}+\frac{1}{24})^{-1}$$ $$R_{2-4}=5.42\Omega$$ Then finally we can find the combination of $R_{1-5}$ since $R_1$, $R_{2-4}$, and $R_5$ are all in series (all of the current from the battery must go through each of the resistors). $$R_{1-5}=R_1+R_{2-4}+R_5$$ $$R_{1-5}=25+5.42+10$$ $$R_{1-5}=40.42 \Omega$$ So the total equivalent resistance of the whole circuit is $40.42\Omega$. We can use this to find the total current coming out of the battery using Ohm's law: $$\Delta V_{bat}=I_{bat} R_{eq}$$ $$9=I_{bat}40.42$$ $$I_{bat}=0.22 A$$ So the battery must provide 0.22 A of current to the circuit.

Strategies for Analysis

Depending on what you are given and what you trying to figure out about the circuit, your approach to the analysis may be different. As in the example above, with the resistance of all the resistors given, combining the resistors into an equivalent resistor is often useful; however, you could also be given the power of resistor, the potential difference, or the current. A few strategies that you might find useful may be:

Color coding of equivalent areas of potential difference on a complex circuit. Each color represents a different electric potential.

Other kinds of Circuits

We should also say that there are many more circuit elements beyond just resistors and capacitors. There are operational amplifiers (often called op amps for short), transistors, diodes, and various kinds of chips that can be used to help build up a circuit. Most circuits (or anything that is plugged into the wall outlets) will also not operate under a steady-state current (also called Direct Current or DC). Instead, the power that comes from the wall is what we call alternating current or AC. In an AC circuit, both the current vs. time graph and the voltage vs. time graph would look like a sine curve, constantly switching between positive and negative. This is done for a variety of reasons; it's easier to produce and has fewer power losses during transport. Unfortunately, AC circuits and these other circuit elements are beyond the scope of this class.

Examples