183_notes:examples:deer_slug_example

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
183_notes:examples:deer_slug_example [2014/10/01 05:20] pwirving183_notes:examples:deer_slug_example [2014/10/01 05:24] (current) pwirving
Line 54: Line 54:
 We can relate the momentum before to the momentum after then giving us the following equation. We can relate the momentum before to the momentum after then giving us the following equation.
  
-$0 = M_G * V_G + m_S * V_S \longrightarrow M_G * V_G$ is negative and $m_S * V_S$ is positive+$0 = M_G * V_G + m_S * V_S \longrightarrow M_G * V_G$ is negative and $m_S * V_S$ is positive (see diagram). 
 + 
 +To find the force acting on the shoulder of the shooter me need to know $V_G$ in order to find change in momentum for the gun and relate this to the force using $\vec{F}_{net} = \dfrac{\Delta\vec{p}}{\Delta t}$. Rearrange the previous equation.
  
 $V_G = {\dfrac{-m_s}{M_G}} V_S$ $V_G = {\dfrac{-m_s}{M_G}} V_S$
 +
 +Fill in the values for the corresponding variables.
  
 $V_G = - {\dfrac{0.22kg}{3.5kg}}{500m/s} = -31.4m/s$ $V_G = - {\dfrac{0.22kg}{3.5kg}}{500m/s} = -31.4m/s$
  
-Need to find what kind of force that is on your shoulder.+Use the value found for $V_G$ to find the change in momentum and hence find what kind of force that is on your shoulder.
  
 $\vec{F}_{net} = \dfrac{\Delta\vec{p}}{\Delta t}$ $\vec{F}_{net} = \dfrac{\Delta\vec{p}}{\Delta t}$
 +
 +Fill in values for known variables.
  
 $\vec{F}_{net} =\dfrac{(3.5kg)(-31.4m/s + 0m/s)}{(1/24s)}$ $\vec{F}_{net} =\dfrac{(3.5kg)(-31.4m/s + 0m/s)}{(1/24s)}$
  • 183_notes/examples/deer_slug_example.1412140808.txt.gz
  • Last modified: 2014/10/01 05:20
  • by pwirving