183_notes:examples:deer_slug_example

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
183_notes:examples:deer_slug_example [2014/10/01 05:22] pwirving183_notes:examples:deer_slug_example [2014/10/01 05:24] (current) pwirving
Line 56: Line 56:
 $0 = M_G * V_G + m_S * V_S \longrightarrow M_G * V_G$ is negative and $m_S * V_S$ is positive (see diagram). $0 = M_G * V_G + m_S * V_S \longrightarrow M_G * V_G$ is negative and $m_S * V_S$ is positive (see diagram).
  
-To find the force acting on the shoulder of the shooter me need to know $V_G$ in order to find change in momentum for the gun and relate this to the force using $\vec{F}_{net} = \dfrac{\Delta\vec{p}}{\Delta t}$+To find the force acting on the shoulder of the shooter me need to know $V_G$ in order to find change in momentum for the gun and relate this to the force using $\vec{F}_{net} = \dfrac{\Delta\vec{p}}{\Delta t}$. Rearrange the previous equation.
  
 $V_G = {\dfrac{-m_s}{M_G}} V_S$ $V_G = {\dfrac{-m_s}{M_G}} V_S$
 +
 +Fill in the values for the corresponding variables.
  
 $V_G = - {\dfrac{0.22kg}{3.5kg}}{500m/s} = -31.4m/s$ $V_G = - {\dfrac{0.22kg}{3.5kg}}{500m/s} = -31.4m/s$
  
-Need to find what kind of force that is on your shoulder.+Use the value found for $V_G$ to find the change in momentum and hence find what kind of force that is on your shoulder.
  
 $\vec{F}_{net} = \dfrac{\Delta\vec{p}}{\Delta t}$ $\vec{F}_{net} = \dfrac{\Delta\vec{p}}{\Delta t}$
 +
 +Fill in values for known variables.
  
 $\vec{F}_{net} =\dfrac{(3.5kg)(-31.4m/s + 0m/s)}{(1/24s)}$ $\vec{F}_{net} =\dfrac{(3.5kg)(-31.4m/s + 0m/s)}{(1/24s)}$
  • 183_notes/examples/deer_slug_example.1412140970.txt.gz
  • Last modified: 2014/10/01 05:22
  • by pwirving