Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
| 184_notes:linecharge [2021/02/13 19:13] – [Putting it together] bartonmo | 184_notes:linecharge [2021/07/22 18:17] (current) – schram45 | ||
|---|---|---|---|
| Line 46: | Line 46: | ||
| $$\vec{E}=\int\frac{1}{4\pi\epsilon_0}\frac{Q}{L}\frac{dx}{(\frac{L}{2}+d-x)^2}\hat{x}$$ | $$\vec{E}=\int\frac{1}{4\pi\epsilon_0}\frac{Q}{L}\frac{dx}{(\frac{L}{2}+d-x)^2}\hat{x}$$ | ||
| - | The final piece that we need to add is limits to the integral. Since the piece of tape stretches from $-\frac{L}{2}$ to $\frac{L}{2}$, | + | The final piece that we need to add is limits to the integral. Since the piece of tape stretches from $-\frac{L}{2}$ to $\frac{L}{2}$, |
| $$\vec{E}=\int_{-\frac{L}{2}}^{\frac{L}{2}}\frac{1}{4\pi\epsilon_0}\frac{Q}{L}\frac{dx}{(\frac{L}{2}+d-x)^2}\hat{x}$$ | $$\vec{E}=\int_{-\frac{L}{2}}^{\frac{L}{2}}\frac{1}{4\pi\epsilon_0}\frac{Q}{L}\frac{dx}{(\frac{L}{2}+d-x)^2}\hat{x}$$ | ||
| Line 52: | Line 52: | ||
| ==== Examples ==== | ==== Examples ==== | ||
| - | [[: | + | * [[: |
| + | * Video Example: Electric Field from a Ring of Charge | ||
| + | * [[: | ||
| + | * Video Example: Electric Field from a Cylinder of Charge | ||
| + | {{youtube> | ||
| + | {{youtube> | ||
| / | / | ||