183_notes:ap_derivation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
183_notes:ap_derivation [2014/11/20 18:06] caballero183_notes:ap_derivation [2014/11/20 18:06] (current) caballero
Line 1: Line 1:
 ===== Derivation of the Angular Momentum Principle ==== ===== Derivation of the Angular Momentum Principle ====
  
-Consider a single particle (mass, $m$) that is moving with a momentum $p$. This particle experiences a net force $F_{net}$, which will change the particle's momentum based on the momentum principle,+Consider a single particle (mass, $m$) that is moving with a momentum $\vec{p}$. This particle experiences a net force $\vec{F}_{net}$, which will change the particle's momentum based on the momentum principle,
  
-$$F_{net} = \dfrac{d\vec{p}}{dt}$$+$$\vec{F}_{net} = \dfrac{d\vec{p}}{dt}$$
  
 Now, if we consider the cross product of the momentum principle with some defined lever arm (e.g., the origin of coordinates), $\vec{r}$, we can show this results in the angular momentum principle. Now, if we consider the cross product of the momentum principle with some defined lever arm (e.g., the origin of coordinates), $\vec{r}$, we can show this results in the angular momentum principle.
Line 25: Line 25:
 $$\vec{\tau}_{net} = \dfrac{d}{dt}\left(\vec{r} \times \vec{p}\right) - m \underbrace{\vec{v} \times \vec{v}}_{=0}$$ $$\vec{\tau}_{net} = \dfrac{d}{dt}\left(\vec{r} \times \vec{p}\right) - m \underbrace{\vec{v} \times \vec{v}}_{=0}$$
  
-And thus, we have the angular momentum principle in it'derivative form,+And thus, we have the angular momentum principle in its derivative form,
  
 $$\vec{\tau}_{net} = \dfrac{d}{dt}\left(\vec{r} \times \vec{p}\right)$$ $$\vec{\tau}_{net} = \dfrac{d}{dt}\left(\vec{r} \times \vec{p}\right)$$
  • 183_notes/ap_derivation.1416506769.txt.gz
  • Last modified: 2014/11/20 18:06
  • by caballero