183_notes:examples:angular_momentum_of_halley_s_comet

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
183_notes:examples:angular_momentum_of_halley_s_comet [2014/11/20 06:22] pwirving183_notes:examples:angular_momentum_of_halley_s_comet [2014/11/20 16:30] (current) pwirving
Line 26: Line 26:
 === Approximations & Assumptions === === Approximations & Assumptions ===
  
 +No other interactions the rest of the solar system.
  
 +Assume main interaction is with the sun.
  
  
Line 41: Line 43:
 Direction: At both locations, the direction of the translational angular momentum of the comet is in the -z direction (into the computer); determined by using the right-hand rule. Direction: At both locations, the direction of the translational angular momentum of the comet is in the -z direction (into the computer); determined by using the right-hand rule.
  
-At location 1:+Given this information we know at location 1 the translational angular momentum of the comet relative to the sun will be: 
 + 
 +$\left|\vec{L}_{trans,Sun}\right| = \left|\vec{r}_A\right|\left|\vec{p}\right|\sin \theta$ 
 + 
 +We don't know the momentum but we do know the mass and velocity of the comet at $\vec{r}_{1}$ so our equation becomes: 
 + 
 +$\left|\vec{L}_{trans,Sun}\right| = \left|\vec{r}_A\right|\left|\vec{v}\right|\left|m\right|\sin \theta$ 
 + 
 +Substituting in for the known variables we get:
  
 $\mid\vec{L}_{trans,Sun}\mid$ = $(8.77$ x $10^{10}m)(2.2$ x $10^{14}kg)(5.46$ x $10^4m/s)sin 90^{\circ}$ $\mid\vec{L}_{trans,Sun}\mid$ = $(8.77$ x $10^{10}m)(2.2$ x $10^{14}kg)(5.46$ x $10^4m/s)sin 90^{\circ}$
 +
 +Solving for $\mid\vec{L}_{trans,Sun}\mid$ we get:
  
 $= 1.1$ x $10^{30}$ $kg \cdot m^2/s$ $= 1.1$ x $10^{30}$ $kg \cdot m^2/s$
 +
 +In vector form $\vec{L}_{trans,Sun}$ is:
  
 $\vec{L}_{trans,Sun}$ = $\langle{0, 0, -1.1 x 10^30}\rangle$ $kg \cdot m^2/s$ $\vec{L}_{trans,Sun}$ = $\langle{0, 0, -1.1 x 10^30}\rangle$ $kg \cdot m^2/s$
  
  
-At location 2:+The same step by step process is used to solve for $\vec{L}_{trans,Sun}$ at location 2:
  
 $\mid\vec{L}_{trans,Sun}\mid$ = $(1.19$ x $10^{12}m)(2.2$ x $10^{14}kg)(1.32$ x $10^4m/s)sin 17.81^{\circ}$ $\mid\vec{L}_{trans,Sun}\mid$ = $(1.19$ x $10^{12}m)(2.2$ x $10^{14}kg)(1.32$ x $10^4m/s)sin 17.81^{\circ}$
Line 57: Line 71:
  
 $\vec{L}_{trans,Sun}$ = $\langle{0, 0, -1.1 x 10^30}\rangle$ $kg \cdot m^2/s$ $\vec{L}_{trans,Sun}$ = $\langle{0, 0, -1.1 x 10^30}\rangle$ $kg \cdot m^2/s$
 +
 +Even in the highly elliptical orbit, the comet's translational angular momentum is constant throughout the orbit, despite the fact that it's position, its momentum, and the angle between them change continuously implying that angular momentum is a conserved quantity.
  
  • 183_notes/examples/angular_momentum_of_halley_s_comet.1416464546.txt.gz
  • Last modified: 2014/11/20 06:22
  • by pwirving