183_notes:examples:angular_momentum_of_halley_s_comet

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
183_notes:examples:angular_momentum_of_halley_s_comet [2014/11/20 06:39] pwirving183_notes:examples:angular_momentum_of_halley_s_comet [2014/11/20 16:30] (current) pwirving
Line 26: Line 26:
 === Approximations & Assumptions === === Approximations & Assumptions ===
  
 +No other interactions the rest of the solar system.
  
 +Assume main interaction is with the sun.
  
  
Line 62: Line 64:
  
  
-At location 2:+The same step by step process is used to solve for $\vec{L}_{trans,Sun}$ at location 2:
  
 $\mid\vec{L}_{trans,Sun}\mid$ = $(1.19$ x $10^{12}m)(2.2$ x $10^{14}kg)(1.32$ x $10^4m/s)sin 17.81^{\circ}$ $\mid\vec{L}_{trans,Sun}\mid$ = $(1.19$ x $10^{12}m)(2.2$ x $10^{14}kg)(1.32$ x $10^4m/s)sin 17.81^{\circ}$
Line 69: Line 71:
  
 $\vec{L}_{trans,Sun}$ = $\langle{0, 0, -1.1 x 10^30}\rangle$ $kg \cdot m^2/s$ $\vec{L}_{trans,Sun}$ = $\langle{0, 0, -1.1 x 10^30}\rangle$ $kg \cdot m^2/s$
 +
 +Even in the highly elliptical orbit, the comet's translational angular momentum is constant throughout the orbit, despite the fact that it's position, its momentum, and the angle between them change continuously implying that angular momentum is a conserved quantity.
  
  • 183_notes/examples/angular_momentum_of_halley_s_comet.1416465581.txt.gz
  • Last modified: 2014/11/20 06:39
  • by pwirving