183_notes:examples:energy_in_a_spring-mass_system

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
183_notes:examples:energy_in_a_spring-mass_system [2014/10/28 12:49] pwirving183_notes:examples:energy_in_a_spring-mass_system [2014/10/28 13:07] (current) pwirving
Line 53: Line 53:
  
 Surroundings: Earth, table, wall (neglect friction, air) Surroundings: Earth, table, wall (neglect friction, air)
 +
 +$E_{f} = E_{i} + W$ The energy principle.
 +
 +$K =  \dfrac{1}{2}mv^2$
 +
 +$U_{spring} = \dfrac{1}{2}k_{s}s^2$
  
  
Line 63: Line 69:
  
 $E_{f} = E_{i} + W$ $E_{f} = E_{i} + W$
 +
 +The initial energy and the final energy can be expressed as the addition of kinetic and potential parts. 
  
 $K_{f} + U_{f} = K_{i} + U_{i} + W$ $K_{f} + U_{f} = K_{i} + U_{i} + W$
  
-$K_{f}$ and $W$ cancel out.+We know that no work is done by the surroundings because the point where the wall force is applied does not move. 
 + 
 +We also know that when the stretch is maximum, the block is momentarily at rest (the turning point). 
 + 
 +With this information we know that $K_{f}$ and $W$ are zero.
  
 $0 + \dfrac{1}{2}k_{s}s^2_{f} = \dfrac{1}{2}mv^2_{i} + \dfrac{1}{2}k_{s}s^2_{i}$ $0 + \dfrac{1}{2}k_{s}s^2_{f} = \dfrac{1}{2}mv^2_{i} + \dfrac{1}{2}k_{s}s^2_{i}$
 +
 +The amplitude corresponds to the stretch $s_{f}$. We want to rearrange the equations to isolate $s_{f}$.
  
 $\dfrac{1}{2}k_{s}s^2_{f} = \dfrac{1}{2}(0.2 kg)(0.5 m/s)^2 + \dfrac{1}{2}(12 N/m)(0.03 m)^2$ $\dfrac{1}{2}k_{s}s^2_{f} = \dfrac{1}{2}(0.2 kg)(0.5 m/s)^2 + \dfrac{1}{2}(12 N/m)(0.03 m)^2$
 +
 +We can further simplify the equation by substituting values in for the variables.
  
 $\dfrac{1}{2}k_{s}s^2_{f} = 0.03 J$ $\dfrac{1}{2}k_{s}s^2_{f} = 0.03 J$
 +
 +Solve for $s_{f}$.
  
 $s_{f} = \sqrt {2(0.03 J)/(12 N/m)} = 0.07 m$ $s_{f} = \sqrt {2(0.03 J)/(12 N/m)} = 0.07 m$
Line 80: Line 98:
  
 b: b:
 +
 +$v_{max}$ is maximum when its final state is when $s_{f} = 0$ which is when the block has only kinetic energy.
 +
 +The total initial energy when there is only kinetic energy is equal to the total final energy when there is only potential energy.
  
 $K_f + 0 = 0.03 J$ $K_f + 0 = 0.03 J$
 +
 +Substitute in $\dfrac{1}{2}mv^2$  for kinetic energy.
  
 $\dfrac{1}{2}mv^2_{f} = 0.03 J$ $\dfrac{1}{2}mv^2_{f} = 0.03 J$
 +
 +Isolate $v_{max}$ to solve for the maximum velocity.
  
 $v_{max} = \sqrt {2(0.03 J)/(0.2 kg)} = 0.55 m/s$ $v_{max} = \sqrt {2(0.03 J)/(0.2 kg)} = 0.55 m/s$
  • 183_notes/examples/energy_in_a_spring-mass_system.1414500542.txt.gz
  • Last modified: 2014/10/28 12:49
  • by pwirving