183_notes:examples:finding_the_time_of_flight_of_a_projectile

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
183_notes:examples:finding_the_time_of_flight_of_a_projectile [2014/07/22 05:45] pwirving183_notes:examples:finding_the_time_of_flight_of_a_projectile [2015/09/15 16:51] (current) – [Solution] pwirving
Line 21: Line 21:
  
 === Representations === === Representations ===
-Diagram of the situation.<wrap todo> I'm confused with what is labeled here</wrap> 
- 
-{{183_notes:examples:bus_vectors.jpg}} 
  
 Diagram of forces acting on bus once it leaves the road. Diagram of forces acting on bus once it leaves the road.
  
-{{183_notes:bus_force.jpg}}+{{183_notes:examples:bus_abstract.jpg}}
  
-Equation for determining $\Delta{t}$ in constant force situations.<wrap todo>use vector principle; then motivate why only y matters</wrap>+General equation for position up date formula for constant force systems:
  
-$y_f - y_i v_{iy} \Delta{t} + \dfrac{1}{2} \dfrac{F_{net,y}}{m} \Delta{t^2}$+$$\vec{r}_{f} \vec{r}_{i} + \vec{v}_{i} \Delta t + \dfrac{1}{2}\dfrac{\vec{F}_{net}}{m} \Delta t^2$$ 
 + 
 +Equation for determining $\Delta{t}$ in constant force situations.
  
 ==== Solution ==== ==== Solution ====
  
-At ground $y_f = 0$the bus initially leaves the road at $y_i = 40$.+In this problem we know the only force acting on the bus is the force due to gravity which acts solely in the y-direction.  
 + 
 +The bus has an initial velocity in the x-direction of $80m/s^{-1}but with no forces acting in the x-direction this velocity will remain constant. 
 + 
 +This x-velocity has no effect on the amount of time it takes for the bus to reach the ground. Just as the z-velocity does not either. 
 + 
 +The force due to gravity is constant so we can use the equation for position up date formula for constant force systems.  
 + 
 +We know the final position of the bus is the ground where the y-component of the position vector is 0. 
 + 
 +We know the bus is accelerating towards the ground at $-9.8ms^{-2}due to the net force in the y-direction being the acceleration due to the force of gravity. 
 + 
 +Since we are concerned only with the y-component of the motion we can use the y-component version of the position update equation:
  
 $y_f - y_i = v_{iy} \Delta{t} + \dfrac{1}{2} \dfrac{F_{net,y}}{m} \Delta{t^2}$ $y_f - y_i = v_{iy} \Delta{t} + \dfrac{1}{2} \dfrac{F_{net,y}}{m} \Delta{t^2}$
 +
 +At ground $y_f = 0$; the bus initially leaves the road at $y_i = 40$.
  
 $0 - 40 = v_{iy} \Delta{t} + \dfrac{1}{2} \dfrac{-mg}{m} \Delta{t^2}$ $0 - 40 = v_{iy} \Delta{t} + \dfrac{1}{2} \dfrac{-mg}{m} \Delta{t^2}$
 +
 +The masses cancel.
  
 $ -40 = v_{iy} \Delta{t} + -\dfrac{1}{2} {g} \Delta{t^2}$ $ -40 = v_{iy} \Delta{t} + -\dfrac{1}{2} {g} \Delta{t^2}$
 +
 +Rearrange the equation.
  
 $ -40 -v_{iy} \Delta{t} = -\dfrac{1}{2} {g} \Delta{t^2}$ $ -40 -v_{iy} \Delta{t} = -\dfrac{1}{2} {g} \Delta{t^2}$
  
--40 -v_{iy} = -\dfrac{1}{2} {g} \Delta{t}$+Sub in values for $v_{iy}$ and ${g}$
  
-2\dfrac{{40 + v_{iy}}}{g} = \Delta{t}$+-40 -(7 \Delta{t}-4.9 \Delta{t^2}$
  
-$ \Delta{t} = 9.59s$+Solve the quadratic equation
  
 +$ \Delta{t} = 3.65s$
  
  
  • 183_notes/examples/finding_the_time_of_flight_of_a_projectile.1406007935.txt.gz
  • Last modified: 2014/07/22 05:45
  • by pwirving