183_notes:examples:walking_in_a_boat

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
183_notes:examples:walking_in_a_boat [2014/10/01 05:43] pwirving183_notes:examples:walking_in_a_boat [2014/10/01 05:51] (current) pwirving
Line 83: Line 83:
 $x_{cm,f} = \dfrac {M(x+D+\dfrac{L}{2}) + m(x+D)}{M+m}$ $x_{cm,f} = \dfrac {M(x+D+\dfrac{L}{2}) + m(x+D)}{M+m}$
  
 +As indicated the center of the mass of the system as not changed position therefore:
  
 $x_{cm,f} = x_{cm,i}$ $x_{cm,f} = x_{cm,i}$
 +
 +So we can relate the equations for initial and final to each other:
  
 $\dfrac {M(x+D+\dfrac{L}{2}) + m(x+D)}{M+m} = \dfrac {M(D+\dfrac{L}{2}) + m(D+L)}{M+m}$ $\dfrac {M(x+D+\dfrac{L}{2}) + m(x+D)}{M+m} = \dfrac {M(D+\dfrac{L}{2}) + m(D+L)}{M+m}$
  
-Same denominator+Both of these equations have the same denominator and so we can cancel it out:
  
 ${M(x+D+\dfrac{L}{2}) + m(x+D)} = {M(D+\dfrac{L}{2}) + m(D+L)}$ ${M(x+D+\dfrac{L}{2}) + m(x+D)} = {M(D+\dfrac{L}{2}) + m(D+L)}$
  
-Solve for x,+Multiply out to solve for x:
  
-$M_x + M(D + \dfrac{L}{2}) + mx + mD = M(D+\dfrac{L}{2}) + mD + mL$+$Mx + M(D + \dfrac{L}{2}) + mx + mD = M(D+\dfrac{L}{2}) + mD + mL$
  
-Cancel like terms+Cancel like terms we get:
  
 $Mx + mx = mL$ $Mx + mx = mL$
Line 104: Line 106:
  
 $(M+m)x = mL$ $(M+m)x = mL$
 +
 +Therefore:
  
 $x = (\dfrac{m}{M+m})L$  $x = (\dfrac{m}{M+m})L$ 
Line 110: Line 114:
  
 Does this make sense? Does this make sense?
 +
 +If you want to check whether something makes sense a good start is to check the units:
  
 Units $(x) = m$  $(\dfrac{m}{M+m})$ = unitless Units $(x) = m$  $(\dfrac{m}{M+m})$ = unitless
  
-If M is really big then $x \equiv 0$, think oil thanker+Therefore m is the remaining unit. 
 + 
 +Another check is that we know that if M is really big then $x \equiv 0$, think of a similar scenario to one just discussed occurring on a oil thanker.
  
 $x = (\dfrac{m}{M+m})L  \equiv \dfrac{m}{M}L \equiv 0$ when $M>>m$ $x = (\dfrac{m}{M+m})L  \equiv \dfrac{m}{M}L \equiv 0$ when $M>>m$
  
-If M = 0 then x $\equiv L$, no boat limit+Another check would be to check what happens when M = 0 then x $\equiv L$, i.e. if there was no boat.
  
 $x = (\dfrac{m}{M+m})L  \equiv \dfrac{m}{M}L \equiv L$ when $m>>M$ $x = (\dfrac{m}{M+m})L  \equiv \dfrac{m}{M}L \equiv L$ when $m>>M$
  
 So the motion of the center of mass of a system is dictated by the net external force. So the motion of the center of mass of a system is dictated by the net external force.
  • 183_notes/examples/walking_in_a_boat.1412142221.txt.gz
  • Last modified: 2014/10/01 05:43
  • by pwirving