184_projects:s20_project_8

This is an old revision of the document!


magnetic.jpg

An experimental magnetic field detector has been constructed outside of the town of Lakeview. Although the purpose of the detector is largely unknown to the townsfolk of Lakeview you and your team have been recruited to develop a magnetic field detector that is able to detect Hawkions. Hawkions are like muons, but are slow-moving and have long lifetimes. They are a newly discovered top secret particles that the data from the probe from Artemis 13 discovered is bombarding the Lakeview area. You have a somewhat constructed model, in which the Hawkions follow a straight line trajectory, but it looks like there are some pieces of code that the team wasn't sure what to do with. You will need to select a few locations to model the magnetic field due to the Hawkions and produce arrows that represent the Hawkion's magnetic field. Best hurry, the government needs more information about the Hawkions particle before it is too late.

## Scene setup
scene.background = color.white
 
## Parameters and Initial Conditions
velocity = vector(1,0,0)
 
## Objects
charge = sphere(pos=vector(-2,0,0), radius=0.1, color=color.blue)
xaxis = cylinder(pos=vector(-3,0,0), axis=vector(6,0,0), radius = 0.01, color=color.black)
yaxis = cylinder(pos=vector(0,-3,0), axis=vector(0,6,0), radius = 0.01, color=color.black)
zaxis = cylinder(pos=vector(0,0,-3), axis=vector(0,0,6), radius = 0.01, color=color.black) 
 
## Calculation Loop
 
t = 0
dt = 0.01
 
while t < 5:
 
    rate(100)
 
    charge.pos = charge.pos + velocity*dt
 
    t = t + dt
 
 
## Not sure what to do with these
 
##p = sphere(pos=vector(-1,-1,0), radius = 0.1, color=color.cyan) 
##Barrow = arrow(color=color.red)
##Barrow.pos = p.pos
##Barrow.axis = vector(0,0,0) 

Learning Goals

  • Visualize the magnetic field from a single moving charge
  • Use the right hand rule to predict the direction of the magnetic field
  • Understand how to use a cross product conceptually and mathematically
  • Explain the similarities and differences between electric and magnetic fields
  • 184_projects/s20_project_8.1582639320.txt.gz
  • Last modified: 2020/02/25 14:02
  • by hallstein