Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
| 184_notes:resistivity [2018/06/19 14:41] – [Conductivity] curdemma | 184_notes:resistivity [2021/02/27 04:07] (current) – [Making sense of $R$] bartonmo | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| Section 19.2 in Matter and Interactions (4th edition) | Section 19.2 in Matter and Interactions (4th edition) | ||
| - | [[184_notes: | + | /*[[184_notes: |
| - | [[184_notes: | + | [[184_notes: |
| ===== Resistors and Conductivity ===== | ===== Resistors and Conductivity ===== | ||
| Line 30: | Line 30: | ||
| ====Resistance==== | ====Resistance==== | ||
| - | Before when we talked about resistors, we said that a resistor was a section or part of the circuit where the passage of electrons requires more energy (conventionally, | + | [[184_notes: |
| - | {{ 184_notes:resistorshape.jpg?350}} | + | [{{ 184_notes:resistor_shape.png?350|A piece of a resistor with a potential difference of $\Delta$ V from one end to the other, a length L, and a cross-sectional area of A.}}] |
| - | == Derivation of $R$ == | + | |
| + | ==== Derivation of $R$ ==== | ||
| For example, suppose we have a resistor that has a cross sectional area of $A$, a length $L$, and a potential difference of $\Delta V$ from one end to the other. If we //__assume a steady state current__//, | For example, suppose we have a resistor that has a cross sectional area of $A$, a length $L$, and a potential difference of $\Delta V$ from one end to the other. If we //__assume a steady state current__//, | ||
| $$\Delta V =- \int_i^f \vec{E} \cdot \vec{dl}$$ | $$\Delta V =- \int_i^f \vec{E} \cdot \vec{dl}$$ | ||
| - | {{184_notes: | + | [{{ 184_notes:resistor_efield_dl.png?300|Electric field direction in a resistor (shown by the red arrow) and the dl vector shown by the blue arrow.}}] |
| Because $\vec{E}$ would point along the length of the wire, we would want to integrate along the length of the wire, which would mean that $\vec{E}$ and $\vec{dl}$ would be parallel. This simplifies the dot product to just a multiplication, | Because $\vec{E}$ would point along the length of the wire, we would want to integrate along the length of the wire, which would mean that $\vec{E}$ and $\vec{dl}$ would be parallel. This simplifies the dot product to just a multiplication, | ||
| Line 51: | Line 52: | ||
| $$R =\frac{L}{\sigma A}$$ | $$R =\frac{L}{\sigma A}$$ | ||
| - | == Making sense of $R$ == | + | ==== Making sense of $R$ ==== |
| Why does the bottom fraction make sense? A longer, thinner wire should be more resistive, so the geometric properties make sense (directly proportionally to $L$ and inversely proportional to $A$). A wire with higher conductivity should be less resistive, which also make sense (inversely proprtional to $\sigma$). | Why does the bottom fraction make sense? A longer, thinner wire should be more resistive, so the geometric properties make sense (directly proportionally to $L$ and inversely proportional to $A$). A wire with higher conductivity should be less resistive, which also make sense (inversely proprtional to $\sigma$). | ||
| - | Resistance has units of volts per amp, which is also called an ohm. An ohm is represented by a capital omega ($\Omega$). Sometimes you may see resistance rewritten in terms of **resistivity**($\rho$), | + | **Resistance has units of volts per amp, which is also called an ohm.** An ohm is represented by a capital omega ($\Omega$). Sometimes you may see resistance rewritten in terms of **resistivity**($\rho$), |
| - | === Ohm's Model === | + | ==== Ohm's Model ==== |
| Perhaps equally as important, we can now relate the change in electric potential over a resistor to the resistance and current passing through the resistor. This model of resistance works well for low voltage and currents. This model is also often called " | Perhaps equally as important, we can now relate the change in electric potential over a resistor to the resistance and current passing through the resistor. This model of resistance works well for low voltage and currents. This model is also often called " | ||
| Line 67: | Line 68: | ||
| ^ Micro ^ Macro ^ | ^ Micro ^ Macro ^ | ||
| | $v_{avg}=uE$ | | $v_{avg}=uE$ | ||
| - | | $i=nAv_{avg}=nAUE$ | | + | | $i=nAv_{avg}=nAuE$ | |
| ==== Examples ==== | ==== Examples ==== | ||