184_notes:examples:week10_force_on_charge

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
184_notes:examples:week10_force_on_charge [2017/10/29 21:37] – [Solution] tallpaul184_notes:examples:week10_force_on_charge [2017/11/02 13:32] (current) dmcpadden
Line 1: Line 1:
 =====Magnetic Force on Moving Charge===== =====Magnetic Force on Moving Charge=====
-Suppose you have a moving charge ($q=1.5 \text{ mC}$) in a magnetic field ($\vec{B} = 0.4 \text{ mT } \hat{y}$). The charge has a speed of $10 \text{ m/s}$. What is the magnetic force on the charge if its motion is in the $+x$-direction? The $+y$-direction?+Suppose you have a moving charge ($q=1.5 \text{ mC}$) in a magnetic field ($\vec{B} = 0.4 \text{ mT } \hat{y}$). The charge has a speed of $10 \text{ m/s}$. What is the magnetic force on the charge if its motion is in the $+x$-direction? The $-y$-direction?
  
 ===Facts=== ===Facts===
   * The charge is $q=1.5 \text{ mC}$.   * The charge is $q=1.5 \text{ mC}$.
   * There is an external magnetic field $\vec{B} = 0.4 \text{ mT } \hat{y}$.   * There is an external magnetic field $\vec{B} = 0.4 \text{ mT } \hat{y}$.
-  * The velocity of the charge is $\vec{v} = 10 \text{ m/s } \hat{x}$ or $\vec{v} = 10 \text{ m/s } \hat{y}$.+  * The velocity of the charge is $\vec{v} = 10 \text{ m/s } \hat{x}$ or $\vec{v} = -10 \text{ m/s } \hat{y}$.
  
 ===Lacking=== ===Lacking===
Line 12: Line 12:
 ===Approximations & Assumptions=== ===Approximations & Assumptions===
   * The magnetic force on the charge contains no unknown contributions.   * The magnetic force on the charge contains no unknown contributions.
 +  * The charge is moving at a constant speed (no other forces acting on it)
  
 ===Representations=== ===Representations===
Line 18: Line 19:
   * We represent the two situations below.   * We represent the two situations below.
  
-{{ 184_notes:10_moving_charge.png?200 |Moving Charge in a Magnetic Field}}+{{ 184_notes:10_moving_charge.png?500 |Moving Charge in a Magnetic Field}}
 ====Solution==== ====Solution====
 Let's start with the first case, when $\vec{v}=10 \text{ m/s } \hat{x}$. Let's start with the first case, when $\vec{v}=10 \text{ m/s } \hat{x}$.
  
-The trickiest part of finding magnetic force is the cross-product. One can always use the [[184_notes:rhr|Right Hand Rule]], but we will go through the math here to be sure. You may remember from the [[184_notes:math_review#Vector_Multiplication|math review]] that there are a couple ways to do this. Below, we show how to use vector components, for which it's helpful to rewrite $\vec{v}$ and $\vec{B}$ with their components.+The trickiest part of finding magnetic force is the cross-product. You may remember from the [[184_notes:math_review#Vector_Multiplication|math review]] that there are a couple ways to do the cross product. Below, we show how to use vector components, for which it's helpful to rewrite $\vec{v}$ and $\vec{B}$ with their components.
  
 \begin{align*} \begin{align*}
Line 28: Line 29:
   \vec{B} &= \langle 0, 4\cdot 10^{-4}, 0 \rangle \text{ T} \\   \vec{B} &= \langle 0, 4\cdot 10^{-4}, 0 \rangle \text{ T} \\
   \vec{v} \times \vec{B} &= \langle v_y B_z - v_z B_y, v_z B_x - v_x B_z, v_x B_y - v_y B_x \rangle \\   \vec{v} \times \vec{B} &= \langle v_y B_z - v_z B_y, v_z B_x - v_x B_z, v_x B_y - v_y B_x \rangle \\
-                         &= \langle 0 - 0, 0 - 0, 4\cdot 10^{-3} - 0 \rangle \text{ T} \cdot \text{m/s}+                         &= \langle 0, 0, 4\cdot 10^{-3} \rangle \text{ T} \cdot \text{m/s}
 \end{align*} \end{align*}
 +
 +Alternatively, we could use the whole vectors and the angle between them. We find that we obtain the same result for the cross product. One would need to use the [[184_notes:rhr|Right Hand Rule]] to find that the direction of the cross product is $+\hat{z}$. The magnitude is given by
 +
 +$$\left|\vec{v} \times \vec{B} \right|= \left|\vec{v}\right| \left|\vec{B} \right| \sin\theta = (10 \text{ m/s})(4\cdot 10^{-4} \text{ T}) \sin 90^{\text{o}} = 4\cdot 10^{-3} \text{ T} \cdot \text{m/s}$$
 +
 +We get the same answer with both methods. Now, for the force calculation:
 +
 +$$\vec{F}_B = q \vec{v} \times \vec{B} = 1.5 \text{ mC } \cdot 4\cdot 10^{-3} \text{ T} \cdot \text{m/s } \hat{z} = 6 \mu\text{N}$$
 +
 +Notice that the $\sin 90^{\text{o}}$ is equal to $1$. This means that this is the maximum force that the charge can feel, and we get this value because the velocity and the B-field are exactly perpendicular. Any other orientation would have yielded a weaker magnetic force. In fact, in the second case, when the velocity is parallel to the magnetic field, the cross product evaluates to $0$. See below for the calculations.
 +
 +\begin{align*}
 +  \vec{v} &= \langle 0, -10, 0 \rangle \text{ m/s} \\
 +  \vec{B} &= \langle 0, 4\cdot 10^{-4}, 0 \rangle \text{ T} \\
 +  \vec{v} \times \vec{B} &= \langle v_y B_z - v_z B_y, v_z B_x - v_x B_z, v_x B_y - v_y B_x \rangle \\
 +                         &= \langle 0, 0, 0 \rangle
 +\end{align*}
 +
 +Or, with whole vectors:
 +
 +$$\left|\vec{v} \times \vec{B} \right|= \left|\vec{v}\right| \left|\vec{B} \right| \sin\theta = (10 \text{ m/s})(4\cdot 10^{-4} \text{ T}) \sin 0 = 0$$
 +
 +When the velocity is parallel to the magnetic field, $\vec{F}_B=0$.
  • 184_notes/examples/week10_force_on_charge.1509313022.txt.gz
  • Last modified: 2017/10/29 21:37
  • by tallpaul