184_notes:examples:week10_force_on_charge

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
184_notes:examples:week10_force_on_charge [2017/10/29 21:54] – [Solution] tallpaul184_notes:examples:week10_force_on_charge [2017/11/02 13:32] (current) dmcpadden
Line 1: Line 1:
 =====Magnetic Force on Moving Charge===== =====Magnetic Force on Moving Charge=====
-Suppose you have a moving charge ($q=1.5 \text{ mC}$) in a magnetic field ($\vec{B} = 0.4 \text{ mT } \hat{y}$). The charge has a speed of $10 \text{ m/s}$. What is the magnetic force on the charge if its motion is in the $+x$-direction? The $+y$-direction?+Suppose you have a moving charge ($q=1.5 \text{ mC}$) in a magnetic field ($\vec{B} = 0.4 \text{ mT } \hat{y}$). The charge has a speed of $10 \text{ m/s}$. What is the magnetic force on the charge if its motion is in the $+x$-direction? The $-y$-direction?
  
 ===Facts=== ===Facts===
   * The charge is $q=1.5 \text{ mC}$.   * The charge is $q=1.5 \text{ mC}$.
   * There is an external magnetic field $\vec{B} = 0.4 \text{ mT } \hat{y}$.   * There is an external magnetic field $\vec{B} = 0.4 \text{ mT } \hat{y}$.
-  * The velocity of the charge is $\vec{v} = 10 \text{ m/s } \hat{x}$ or $\vec{v} = 10 \text{ m/s } \hat{y}$.+  * The velocity of the charge is $\vec{v} = 10 \text{ m/s } \hat{x}$ or $\vec{v} = -10 \text{ m/s } \hat{y}$.
  
 ===Lacking=== ===Lacking===
Line 12: Line 12:
 ===Approximations & Assumptions=== ===Approximations & Assumptions===
   * The magnetic force on the charge contains no unknown contributions.   * The magnetic force on the charge contains no unknown contributions.
 +  * The charge is moving at a constant speed (no other forces acting on it)
  
 ===Representations=== ===Representations===
Line 18: Line 19:
   * We represent the two situations below.   * We represent the two situations below.
  
-{{ 184_notes:10_moving_charge.png?200 |Moving Charge in a Magnetic Field}}+{{ 184_notes:10_moving_charge.png?500 |Moving Charge in a Magnetic Field}}
 ====Solution==== ====Solution====
 Let's start with the first case, when $\vec{v}=10 \text{ m/s } \hat{x}$. Let's start with the first case, when $\vec{v}=10 \text{ m/s } \hat{x}$.
Line 37: Line 38:
 We get the same answer with both methods. Now, for the force calculation: We get the same answer with both methods. Now, for the force calculation:
  
-$$\vec{F} = q \vec{v} \times \vec{B} = 1.5 \text{ mC } \cdot 4\cdot 10^{-3} \text{ T} \cdot \text{m/s } \hat{z} = 6 \mu\text{N}$$+$$\vec{F}_B = q \vec{v} \times \vec{B} = 1.5 \text{ mC } \cdot 4\cdot 10^{-3} \text{ T} \cdot \text{m/s } \hat{z} = 6 \mu\text{N}$$
  
-Notice that the $\sin 90^{\text{o}}$ term evaluates to $1$. This is the maximum value it can be, and we get this value because the velocity and the B-field were exactly perpendicular. Any other orientation would have yielded a weaker magnetic force. In fact, in the second case, when the velocity is parallel+Notice that the $\sin 90^{\text{o}}$ is equal to $1$. This means that this is the maximum force that the charge can feel, and we get this value because the velocity and the B-field are exactly perpendicular. Any other orientation would have yielded a weaker magnetic force. In fact, in the second case, when the velocity is parallel to the magnetic field, the cross product evaluates to $0$. See below for the calculations. 
 + 
 +\begin{align*} 
 +  \vec{v} &= \langle 0, -10, 0 \rangle \text{ m/s} \\ 
 +  \vec{B} &= \langle 0, 4\cdot 10^{-4}, 0 \rangle \text{ T} \\ 
 +  \vec{v} \times \vec{B} &= \langle v_y B_z - v_z B_y, v_z B_x - v_x B_z, v_x B_y - v_y B_x \rangle \\ 
 +                         &= \langle 0, 0, 0 \rangle 
 +\end{align*} 
 + 
 +Or, with whole vectors: 
 + 
 +$$\left|\vec{v} \times \vec{B} \right|= \left|\vec{v}\right| \left|\vec{B} \right| \sin\theta = (10 \text{ m/s})(4\cdot 10^{-4} \text{ T}) \sin 0 = 0$$ 
 + 
 +When the velocity is parallel to the magnetic field, $\vec{F}_B=0$.
  • 184_notes/examples/week10_force_on_charge.1509314055.txt.gz
  • Last modified: 2017/10/29 21:54
  • by tallpaul