184_notes:examples:week4_two_segments

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
184_notes:examples:week4_two_segments [2018/06/07 13:12] curdemma184_notes:examples:week4_two_segments [2021/05/25 14:28] (current) schram45
Line 39: Line 39:
  
 Because we know that electric fields add through superposition, we can treat each of the charges separately, find the electric field, then add the fields together at $P$ at the end. We can begin with the electric field due to the segment along the $y$-axis. We start by finding $\text{d}Q$ and $\vec{r}$. The charge is uniformly distributed so we have a simple line charge density of $\lambda=Q/L$. The segment extends in the $y$-direction, so we have $\text{d}l=\text{d}y$. This gives us $\text{d}Q$: $$\text{d}Q=\lambda\text{d}l=\frac{Q\text{d}y}{L}$$ Because we know that electric fields add through superposition, we can treat each of the charges separately, find the electric field, then add the fields together at $P$ at the end. We can begin with the electric field due to the segment along the $y$-axis. We start by finding $\text{d}Q$ and $\vec{r}$. The charge is uniformly distributed so we have a simple line charge density of $\lambda=Q/L$. The segment extends in the $y$-direction, so we have $\text{d}l=\text{d}y$. This gives us $\text{d}Q$: $$\text{d}Q=\lambda\text{d}l=\frac{Q\text{d}y}{L}$$
 +
 +<WRAP TIP>
 +===Assumption===
 +The charge is evenly distributed along each segment of charge. This allows each little piece of charge to have the same value along each line.
 +</WRAP>
  
 {{ 184_notes:4_two_segments_pos_dq.png?450 |dQ for Segment on y-axis}} {{ 184_notes:4_two_segments_pos_dq.png?450 |dQ for Segment on y-axis}}
  • 184_notes/examples/week4_two_segments.1528377149.txt.gz
  • Last modified: 2018/06/07 13:12
  • by curdemma